

Cycle Development of Vaporized Hydrogen Peroxide (VHP) Under Room Exhaust Conditions in the CL3 Laboratory

Joanna Spinato Public Health Ontario Laboratories (PHOL) - Toronto September 18, 2019

Learning Outcomes

- Develop effective VHP decon cycle evolving beyond current industry practices
- 2. Identify requirements for validation of VHP decon under slight exhaust conditions
- 3. Conduct VHP validation under slight exhaust conditions
- 4. Establish trim valve and exhaust settings to be programmed in at the push of a button

Objective

 To establish the parameters of a VHP decon cycle that can be run during hours of normal business operation under slight room exhaust

Introduction

VHP decontamination advantages:

- excellent material compatibility;
- carried out at low temperature, ambient pressure;
- results in non-toxic by-products

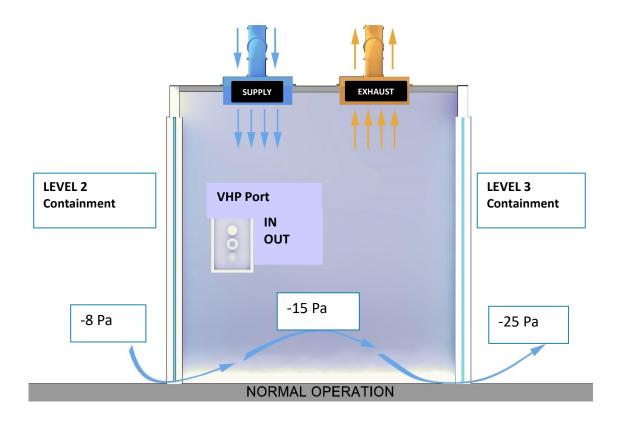
Four (4) phases of VHP run

- 1. dehumidification
- 2. conditioning
- 3. decontamination

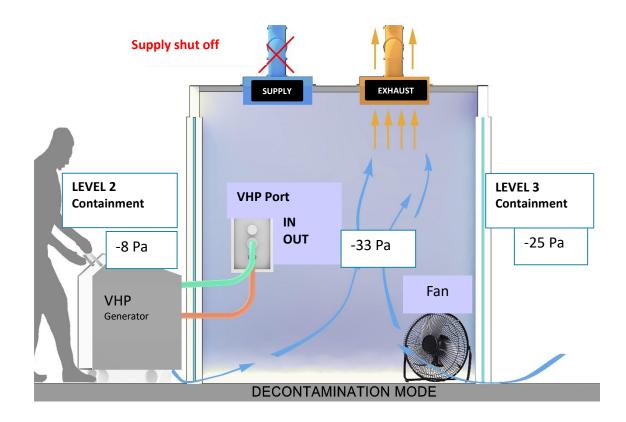
4. aeration

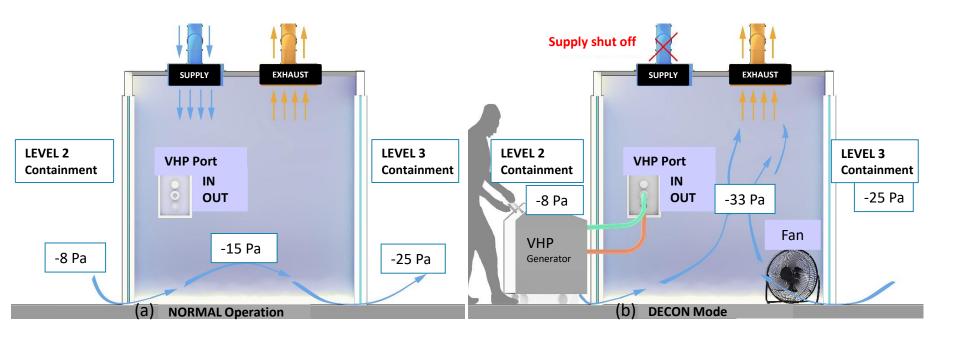
Protection and Promotion Agence de protection et de promotion de la santé

Background


 A 350ft³ decon room on the perimeter of the CL3 equipped with a trim valve

- Trim valve allows small amount of
 VHP to exhaust
 - inward directional airflow maintained
 - VHP leak into adjacent space prevented
- PHOL strives to evolve beyond current practice
 - establish decon method that may safety be run during business hours with minimal impact to CL3 operations


NORMAL Operation



DECON Mode

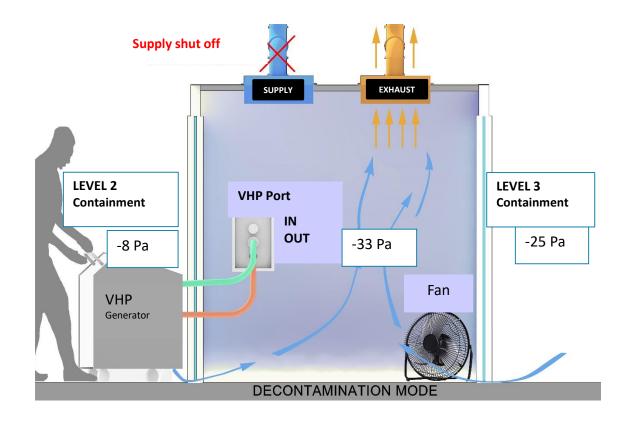
NORMAL vs. DECON Modes

Materials

Steris VHP 1000ARD

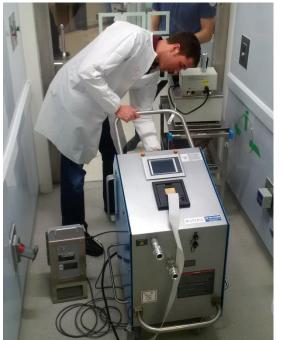
- Vaprox 35% H₂O₂
- Chemical Indicators (CI)
- Biological Indicators (BI) and media tubes
- Drager H₂O₂ Monitor (ppm)
- Triscale sensor
 - Enclosure temp.
 - % relative humidity
 - Vaprox [H₂O₂]

- Port VHP generator to decon room
- Inlet/return ports in room mismatched to generator fittings
 - VHP generator using 35% H₂O₂ installed inside decon room



Decon room settings were programmed as shown:

 Eight (8) BI and 8 CI were placed in 'worst case scenario' locations


Indicator	Location
1	Rear upper right wall (near room exhaust)
2	Right wall centre
3	Front lower right wall
4	Front wall centre
5	Front upper left wall (near equipment for decon)
6	Left wall centre
7	Rear lower left wall
8	Rear wall centre

- BI validate sterility assurance level (SAL)
- CI demonstrate VHP distribution
- One fan was included for maximum VHP mixing

Four VHP runs were performed:

- 1st run to develop initial parameters, test integrity of decon room for leakage, assess VHP distribution with CIs;
- runs 2 and 3 to revise cycle parameters;
- 4th run to establish final cycle parameters

Cycle development considered complete when:

- 1. all cycle parameters are determined;
- 2. SAL validation process demonstrates a 6 log reduction of *G. stearothermophilus* spores;
- **3**. final VHP concentration level of ≤ 1 ppm;
- 4. when the cycle is reproducible

Run 1 – Initial Cycle Parameters

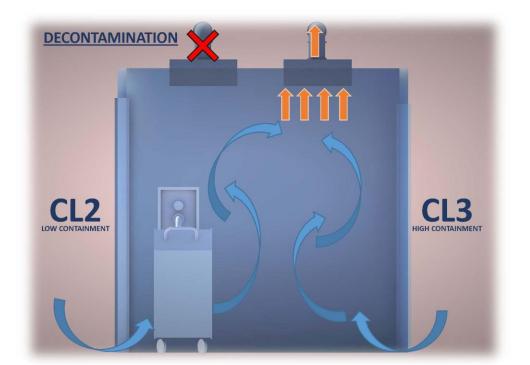
- Initial parameters calculated using manufacturer's instructions¹
- Room isolated from HVAC system
- CIs used, no [VHP] monitoring as cable was unavailable

Parameter/ Phase	Dehumidifi -cation	Condition- ing	Decontami- nation	Aeration	Extended Aeration
Time <i>,</i> hh:mm	00:10	00:05	00:30	00:05	As needed
Airflow, SCFM	20	20	20	20	Variable
Injection Rate, g/min	n/a	11.0	3.5	n/a	n/a
Humidity, mg/L	9.6	n/a	n/a	n/a	n/a

¹VHP Cycle Development Guide (Steris Corp. Mentor OH)

Run 1 – Results

- Cycle started normally
- Significant leakage at CL3 door latch
 @ 10 min into decon phase -> run
 was aborted
- CIs showed adequate colour change



Run 2 – Revised Cycle Parameters

- Cls and [VHP] monitoring
- Triscale sensor placed on decon room floor next to ARD
- Room adjusted to run at slight –ve pressure
- No change in cycle parameters from run 1

Run 2 – Results

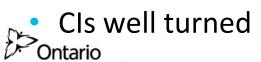
- Dehumidification phase -- easily reached 5.5 mg/L humidity, humidity target lowered from 9.6 to 6.9 mg/L for next runs
- Conditioning phase -- [VHP] = 205 ppm by end
- Decon phase -- [VHP] peaked at 800 ppm @ 22 min into phase
 - Condensation noted on CL3 door, [VHP] decreased and settled at 750 ppm by end of phase
- Aeration phase -- residual VHP = 1.5 ppm @ 2 hours in
- CIs well turned, CI closest to decon room exhaust was slightly less turned

Note on condensation

- Condensation of VHP has –ve consequence on material
- B.P. of H_2O is 100°C and H_2O_2 is 150°C
- H₂O will boil off before H₂O₂
- H₂O₂ will condense out in more concentrated form

Run 3 – Revised Cycle Parameters

- Dehumidification phase lowered from 9.6 to 6.9 mg/L
- Conditioning phase \uparrow from 5 to 10 min; injection rate \downarrow from 11 to 10 g/min
- Decon phase time \uparrow from 30 to 40 min; injection rate \downarrow from 3.5 to 3.2 g/min
- Cls and [VHP] monitoring; decon room under slight –ve pressure


Parameter/ Phase	Dehumidifi -cation	Conditioni ng	Decontami- nation	Aeration	Extended Aeration
Time, hh:mm	00:10	00:10	00:40	00:05	As needed
Airflow, SCFM	20	20	20	20	Variable
Injection Rate, g/min	n/a	10.0	3.2	n/a	n/a
Humidity, mg/L	6.9	n/a	n/a	n/a	n/a

20

Run 3 – Results

- Cycle started normally
- Conditioning phase -- [VHP] = 470 ppm by end
- Decon phase -- Condensation noted on CL3 door @ 12 min into phase, [VHP] = 940 ppm
 - Injection rate lowered to 3.0 g/min and [VHP] settled to 750 ppm
 - @24 min into phase, injection rate returned to 3.2 g/min
- Run completed with no issues.... but....
- Aeration phase -- residual VHP = 4.2 ppm @ 3 hours in

Run 4 – Final Cycle Parameters

- Conditioning phase \downarrow from 10 to 8 min
- Decon injection rate ↑ from 3.2 to 3.5 g/min
- Cls, Bls and [VHP] monitoring; decon room under slight -ve pressure
- Water bath on cart placed in decon room with own BI

Parameter/ Phase	Dehumidifi -cation	Conditioni ng	Decontami- nation	Aeration	Extended Aeration
Time, hh:mm	00:10	00:08	00:40	00:05	As needed
Airflow, SCFM	20	20	20	20	Variable
Injection Rate, g/min	n/a	10.0	3.5	n/a	n/a
Humidity, mg/L	6.9	n/a	n/a	n/a	n/a

22

Run 4 – Results

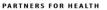
- Cycle proceeded w/o issue
- Decon phase-- Some condensation noted on CL3 door @ 10 min into phase, subsided throughout rest of run
- Aeration phase -- residual VHP = 1.2 ppm @ 2 hours in
- CIs well turned
- Bls collected, transferred to media vials, incubated at 55-60°C for 7 days
 - No BI showed growth at 7 days

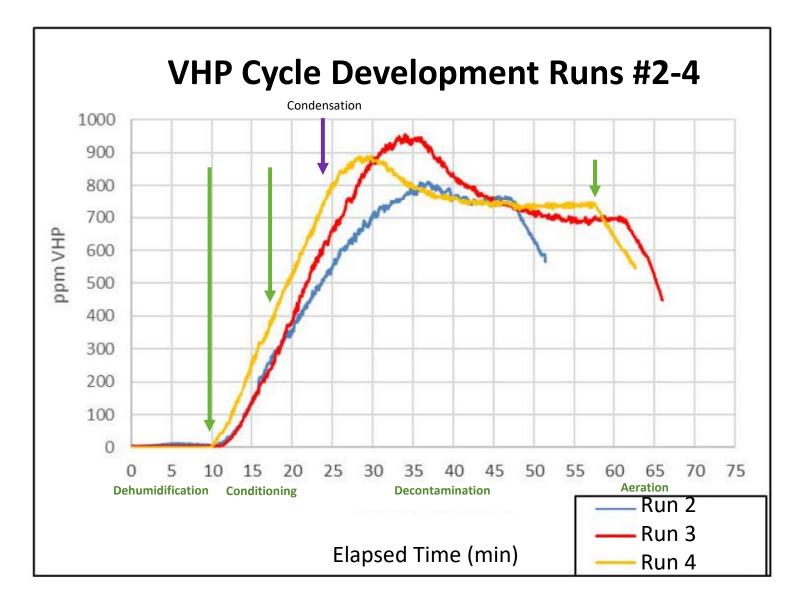
PARTNERS FOR HEALTH

PARTENAIRES POUR LA SANTÉ

Chemical indicators (CI)

Biological Indicators (BI)

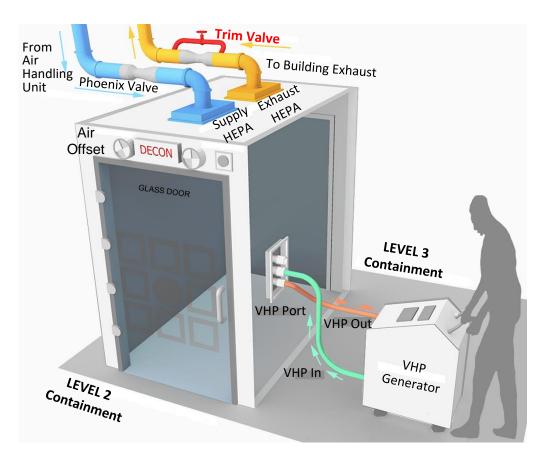




Distario

PARTENAIRES POUR LA SANTÉ

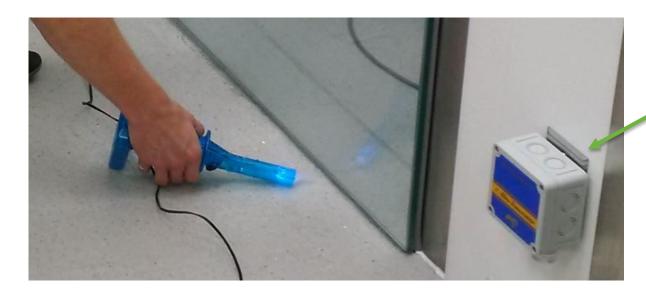
Discussion


• SAL validation did pass with the current room set-up

- VHP generator inside decon room not consistent with the intended use of decon space
- Further runs required once correct size of inlet/return ports are installed
 - verify cycle parameters and reproducibility with typical airflow and VHP mixing

Intended set-up of decon room

Safety notes


- VHP sensors strategically installed and connected with the Building Automation System (BAS)
 - Two VHP sensors permanently installed in decon room to monitor [VHP] on the BAS throughout a run
- Triscale sensor connected to the generator to monitor realtime [VHP]
- Trim valve setting maintains inward directional airflow
- If VHP leaks outside of decon room, alarm will sound (audible and visual), alerting user to abort run

Decon mode

 Smoke pencil demonstrating inward direction airflow when room in decon mode setting

VHP sensor connected with the BAS

Conclusions

 Validation of decon technologies and procedures in containment labs is essential to ensure effective decon of infectious material

 Although successful in decon and safety, cycle parameters developed here require optimization when generator is ported to the decon room as originally designed

Acknowledgements

Thank you to

- Merrick & Co. for technical support and the renderings of the decon room
- Steris for technical on-site support

